轮胎魔术公式的建立和仿真分析

莎莉莎莉 美国NBA 2023-11-03 150 0

来源 |智能运载装备研究所

知圈 |进摄像头镜头/模组/CMOS芯片群,加微yijijuechen2023

车辆依靠轮胎和地面的相互作用产生各种运动,轮胎的特性对汽车运动有着举足轻重的作用魔术。轮胎的侧偏特性是汽车操纵稳定性的基础,轮胎的非线性特性对汽车的转向特性及行驶稳定性有重要影响车辆的操纵稳定性在蛮大程度上取决于轮胎的侧偏特性,包括各种垂直载荷下轮胎的侧向力、纵向力和回正力矩和侧偏角、纵向滑移率的关系,因此建立精确的轮胎动力学模型是进行车辆操纵稳定性控制等仿真研究的基础。

轮胎模型的构造一般分为两种,一种是理论模型,即通过对车轮结构和形变机理的数学描述,建立剪切力和回正力矩和相应参数的函数关系,较有影响的是Gim模型、Fiala模型等魔术。轮胎理论模型是在轮胎物理结构和变形机理研究的基础上建立的对轮胎力和力矩的数学描述,由于理论模型形式复杂,计算效率低,因此在车辆动力学研究中应用有蛮大困难。另⼀种是经验公式或半经验公式模型,它是通过对大量的轮胎力特性的试验数据进行回归分析,会轮胎力特性通过含有拟合参数的公式有效地表达出来,较有影响的是Pacejka模型 (魔术公式)。

Pacejka轮胎模型1987年由荷兰Delft理工大学的H B Pacejka教授提出,后被称为“魔术公式”轮胎模型,这是一个基于试验数据的经验轮胎模型,通过对试验数据拟合得到魔术。试验通过专用的试验台架或试验车进行这种试验设备可以排除次要因素,模拟出待定的轮胎行驶条件,准确地再现轮胎的各种工作情况。H B Pacejka轮胎模型只用一套公式就可完整地表达纯工况下轮胎的力学特性,故称为“魔术公式”。其轮胎力特性的表达精确和简洁,适应工况范围宽广,在汽车操纵动力学研究中应用比较广泛,在现今的轮胎特性描述中,魔术公式日益占据主导地位,其拟合的精度较高,而且在极限值以外的⼀定范围内还是可应用,有较好的置信度,适合于汽车动力学模拟、控制等领域进行理论分析和预测。因此此文采用Pacejka轮胎模型进行具体的轮胎特性分析。

1. 基于魔术公式的轮胎建模

H B Pacejka轮胎模型采用SAE标准轮胎运动坐标系,基于魔术公式的轮胎力计算败入和败出变量关系如图1所示魔术。

轮胎魔术公式的建立和仿真分析

图1 基于魔术公式的轮胎力计算败⼊和败出变量关系

魔术公式一般形式如下 :

式中:Y为侧向力、纵向力或回正力矩 ; X为侧偏角α 或纵向滑移率λ; D为峰值因子;B为刚度因子;C为曲线形状因子;E为曲线曲率因子;Sh为曲线水平方向漂移 ; Sv为曲线垂直方向漂移魔术。应用此公式能建立轮胎的纵向力、侧向力和回正力矩的数学模型,完整地表达轮胎的力学特性。

1.1 单制动⼯况下轮胎纵向⼒

在纯制动单一工况下魔术,轮胎纵向力

轮胎魔术公式的建立和仿真分析

和纵向滑移率λ和轮胎垂直载荷

轮胎魔术公式的建立和仿真分析

当中的关系能描述为

式中:曲线形状因子;峰值因子

;刚度因子

轮胎魔术公式的建立和仿真分析

曲线曲率因子;λ为纵向滑移率 ;为拟合系数魔术。

1.2 单转向⼯况轮胎侧向⼒

在纯转向单一工况下魔术,轮胎侧向力和轮胎侧偏角和轮胎垂直载荷当中的关系为

式中:曲线形状因子;峰值因子

;刚度因子

轮胎魔术公式的建立和仿真分析

;曲线水平方向漂移

轮胎魔术公式的建立和仿真分析

;曲线垂直方向漂移;曲率因子;为轮胎侧偏角;γ为车轮外倾角魔术。

1.3 制动转向联合⼯况下纵向⼒及侧向力

在制动转向联合工况下轮胎纵向力和侧向力分别和轮胎侧偏⻆、车轮纵向滑移率λ和轮胎垂直载荷当中的关系为

1.4 回正力矩

“魔术公式”的13个拟合系数如表1所示魔术。

表1 魔术公式拟合系数

依据上面的方程式和相关系数,在Matlab/Simulink中建立轮胎动力学模型如图2所示魔术。

轮胎魔术公式的建立和仿真分析

图2 轮胎动力学模型

2 轮胎特性仿真分析

2.1 轮胎力和纵向滑移率

轮胎侧偏角为1°,垂直载荷为2kN时,轮胎力和纵向滑移率关系曲线如图3所示魔术。当汽车行驶制动时,轮胎常受侧向力作用发生侧偏,由图3能看出,同一侧偏角下,纵向滑移率在12%左右时,制动性能最好且侧向力值较大。

轮胎魔术公式的建立和仿真分析

图3 轮胎力和纵向滑移率的关系

2.2 纵向力和侧向力特性分析

轮胎侧偏角为1°时,败入不同垂直载荷 (分别为2、4、6、8kN) ,制动力随纵向滑移率变化曲线如图4所示魔术。由图4可知,同一侧偏角下,车轮制动力随纵向滑移率提高而迅速增加,蛮快达到最大值,即纵向滑移率在 12%左右时,制动性能较好。

轮胎魔术公式的建立和仿真分析

图4 制动力和纵向滑移率变化曲线

车轮外倾角为1°,车轮纵向滑移率为8%时,败入不同垂直载荷 (分别为 2、4、6、8kN),轮胎侧向力和侧偏角变化曲线如图5所示魔术。汽车行驶时,轮胎垂直载荷常有变化,垂直载荷的变化对轮胎侧偏特性有显著的影响。从图5能看出,当侧偏角 (绝对值 )在较小的范围时,侧向力基此和侧偏角成线性关系,不过当侧偏角到达一定值时,侧向力不再随侧偏角增加,而是基此保全不变,达到饱和状态,也就是侧向力达到附着极限。

轮胎魔术公式的建立和仿真分析

图5轮胎侧向力和侧偏角变化曲线

2.3 回正力矩特性分析

车轮外倾角为1°,车轮纵向滑移率为8%时,败入不同垂直载荷 (分别为 2、4、6、8kN) ,回正力矩和侧偏角变化曲线如图6所示魔术。从图6能看出,回正力矩在侧偏角为4°~6°时最大,侧偏角再增大,回正力矩渐渐减小。不过总之回正力矩数值较小,故在汽车动力学分析时常忽略回正力矩的影响。

轮胎魔术公式的建立和仿真分析

图6 回正力矩和侧偏角变化曲线

3 结语

对用于车辆动力学分析的轮胎模型进行了建模、仿真和分析,结果表明应用魔术公式建立轮胎动力学模型对侧向力、纵向力和回正力矩都能获得较高拟合精度,用一套公式即可表达出轮胎的力特性,统一性强魔术。同时,轮胎特性的仿真表明,为获得车辆侧向稳定性,车轮纵向滑移率需控制在较小范围内,使轮胎纵向力和侧向力都获得较大值;当侧偏角在较小的范围时,侧向力基此和侧偏角成线性关系,不过当侧偏角到达一定值时,侧向力不再随侧偏角增加,而是基此保全不变,达到饱和状态,也就是侧向力达到附着极限;回正力矩数值较小,在汽车动力学分析中常可忽略。

喜欢0发布评论

评论列表

发表评论

  • 昵称(必填)
  • 邮箱
  • 网址